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Notations

I Y is a univariate response variable

I X is a p × 1 vector of predictors

I (Yi ,Xi ), i = 1, 2, . . . , n, are i.i.d. observations of (Y ,X)

I (Y ,X) ∼ f (y ,x) — ioint density function

I F (y ,x) — the joint distribution function
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Goal

Goal of dimension reduction:

I Find k coefficient vectors (or directions) a1, . . . ,ak such that

significant relationships between Y and X are identified

through the k linear combinations a>1 X, . . . ,a>k X, where

1 ≤ k < p.
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Dimension Reduction Subspace

I Let S(B) be the k-dimensional subspace in Rp spanned by

the columns the matrix B

I PS(B) the projection onto S(B)

I S(B) is a Dimension Reduction Subspace (DRS) for the

regression of Y on X if

Y X|PS(B)X [Conditional Independence]

I That is, S(B) is a DRS if f (y | x) = f (y | PS(B)x), for all

(y ,x) ∈ R× Rp.
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Central Subspace (CS)

I Conditional independence holds if B is replaced with any

matrix B∗ such that S(B∗) = S(B), which means that any

basis of a DRS is also a DRS.

I When S(B) is a DRS, the transformation B>X provides a

sufficient dimension reduction

I Let SY |X denote the intersection of all DRSs, which is a DRS

under mild conditions

I SY |X is called the Central Subspace (CS)
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Basis of CS

I Let d = dim(SY |X) < p denote the true dimension of the CS.

I d is called the structural dimension of Y on X.

I Assume, A is a d-dimensional basis for SY |X

I Then the conditional distributions of Y |A>X and Y |X are

the same

I We assume that SY |X exists with structural dimension d and

focus on the robust estimation of a basis A for SY |X .
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Literature Review

I Pioneering methods: Sliced Inverse Regression (SIR) and

Sliced Average Variance Estimation (SAVE).

I There are many powerful model-free dimension reduction

methods in the literature.

I While useful, many DR methods are highly sensitive to

influential observations.

I There are studies on the sensitivity of the existing DR

methods to extreme observations.

I This led to construction of robust version of existing methods.

I Minumum Average Variance Estimation (MAVE) method is

also not robust against outliers in the response variable Y .
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Outliers

I Lack of robustness of DR methods are exacerbated for high

dimensional (HD) datasets

I It is not only difficult to detect outlying and/or influential

observations in HD but often hard to resolve when they are

identified.

I There are studies providing ways of assessing the influence of

extreme observations on the estimates provided by SIR, pHd

and SAVE

I But they do not provide a way to construct estimates that are

inherently robust to data contamination.
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Rényi Divergence

I Our goal is to provide a comprehensive methodology, based

on the Rényi divergence that is inherently robust to data

contamination.

I For α > 0, α 6= 1, f1(u) & f2(u) p.d.f.s, Rényi divergence is:

Dα{f1(U)||f2(U)} =
1

α− 1
ln

[ ∫
u

{
f1(u)

f2(u)

}α−1

f1(u) du

]
.

I Dα{f1(U)||f2(U)} ≥ 0

I Dα{f1(U)||f2(U)} = 0 if and only if f1(u) = f2(u).
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Two special cases of Rényi Divergence

Kullback Leibler (KL) divergence is a limiting case:

lim
α→1

Dα{f1(U)||f2(U)} =

∫
u
ln

{
f1(u)

f2(u)

}
f1(u) du = DKL{f1(U)||f2(U)}

I For α = 1/2, D1/2{f1(U)||f2(U)} = −2 ln
[
1−

{
(HB)2/2

}]
,

I HB =
[ ∫

u

{√
f1(u)−

√
f2(u)

}2
du
]1/2

is the

Hellinger-Bhattacharyya (HB) distance.
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Robust Identification of the CS

For each α ∈ (0, 1), consider a new Rényi divergence-based index

Rα(A) = Dα

{
f (Y ,A>X)||f (Y )f (A>X)

}
=

1

α− 1
ln

[∫
y

∫
A>x

{
f (y ,A>x)

f (y)f (A>x)

}α−1

f (y ,A>x) d(A>x) dy

]
.

Note that

Rα(A) ≥ 0.

Also,

Rα(A) = 0 ⇐⇒ f (y ,A>x) = f (y)f (A>x), i.e., Y A>X.
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Key Properties of Rα(A)

Proposition 1: Let A and A1 denote p × k and p × l matrices,

with k , l ≤ p. For α ∈ (0, 1), and a p × p identity matrix I, then

the following hold:

(i) If S(A1) ⊆ S(A), then Rα(A1) ≤ Rα(A).

(ii) If S(A1) = S(A), then Rα(A1) = Rα(A).

(iii) Rα(A) ≤ Rα(I), and

(iv) Rα(I) = Rα(A) if and only if Y X|A>X.
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Implications of Proposition 1

I S(A1) ⊆ S(A), then Rα(A1) ≤ Rα(A) says searches made successively

through increasing dimensional subspaces will ultimately yield a basis for

SY |X when Y X|A>X is satisfied.

I S(A1) = S(A), then Rα(A1) = Rα(A) says matrices that span the

same subspace have the same measured dependence and therefore, only a

basis for the subspace is needed.

I The bound Rα(A) ≤ Rα(I) indicates that the largest dependence

between X and Y in k dimensions can be recovered by maximizing

Rα(A) with respect to A.

I Finally, if Rα(A) = Rα(I) for a fixed α, then A provides a basis for a

k-dimensional DRS in Rp and accordingly, A>X is a sufficient dimension

reduction for the regression of Y on X.
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What is A?

I When Rα(A) = Rα(I), A>X provides a minimum sufficient dimension

reduction. That is, for d known and α fixed, a basis Ap×d for SY |X can

be recovered as

A = arg maxRα(A∗) subject to the constraint A
>
ΣXA = I,

where ΣX is the covariance matrix of the explanatory vector X.

I We will estimate A without assuming a model.
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Sample estimation

Consider a random sample {(yi ,xi ); i = 1, 2, . . . , n} from (Y ,X), and assume

that the structural dimension d of the regression is known. for any p × k

matrix A and α ∈ (0, 1), we define the following sample estimate

R̂α(A) =
1

α− 1
ln

[
1

n

n∑
i=1

{
f̂ (yi ,A

>xi )

f̂ (yi )f̂ (A>xi )

}α−1
]
,

where f̂ (yi ), f̂ (A>xi ) and f̂ (yi ,A
>xi ) are kernel density estimates of f (yi ),

f (A>xi ) and f (yi ,A
>xi ), respectively.
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Sample estimation

Specifically, to estimate f (yi ,A
>xi ) for a specific coefficient

matrix A = [a1 a2 · · ·ak ], we use the Gaussian product kernel

density estimate

f̂ (yi ,A
>xi ) =

1

nh∗
∏k

l=1 hl

n∑
j=1

(
K
[{

(yj − yi )
}
/h∗
] k∏

l=1

K
[{

a>l (xj − xi )
}
/hl
])
,

with bandwidths h∗ = (4/3)1/5 syn
−1/5 and

hl = {4/(k + 2)}1/(k+4) sl n
−1/(k+4), l = 1, 2, . . . , k, where sy and sl are the

sample standard deviations of the sample observations
{
yi , i = 1, . . . , n

}
and{

a>l xi , i = 1, . . . , n
}

, respectively.
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Estimator

For α ∈ (0, 1), our Rényi divergence based estimator of A is

defined as

Â = argmax R̂α(A∗) subject to the constraint Â>Σ̂xÂ = I,

where Σ̂X is the sample estimate of the covariance matrix of X.
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Main Theorem

Theorem (Consistency)

Let Â = arg max R̂α(A∗) and A = arg maxRα(A∗), for each

α ∈ (0, 1),

Â→ A as n→∞ almost surely (a.s.).
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Heuristic argument for robustness

When α is close to 1, by L’Hospital’s rule

R̂α(A) =
1

α− 1
ln

[
1

n

n∑
i=1

{
f̂ (yi ,A

>xi )

f̂ (yi )f̂ (A>xi )

}α−1
]

≈ 1

n

n∑
i=1

ŵ(i,α) ln

{
f̂ (yi ,A

>xi )

f̂ (yi )f̂ (A>xi )

}
,

which is a weighted version of the sample index D̂KL(A) [Yin and Cook

(2005)], with weights

ŵ(i,α) =

{
f̂ (yi ,A

>xi )

f̂ (yi )f̂ (A>xi )

}α−1
/

1

n

n∑
j=1

{
f̂ (yj ,A

>xj)

f̂ (yj)f̂ (A>xj)

}α−1

.

When α = 1, ŵ(i ,α) = 1, so the maximizer of R̂α(A) will be

essentially same as that of D̂KL(A) = 1
n

∑n
i=1 ln

{
f̂ (yi ,A

>xi )

f̂ (yi )f̂ (A>xi )

}
[Yin and Cook].
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Influence Function

For a fixed α ∈ (0, 1), let (Y ,A>X) ∼ F . Then, our maximization problem

can be considered in terms of the functional T defined as

T (F ) = arg maxRα(A∗) = A,

Let W = (Y ,X) and define the contamination distribution

Fε = (1− ε)F + ε∆w0 , 0 < ε < 1, where ∆w0 is the Dirac distribution which

gives mass 1 to w0 = (y0,x0), allowing contamination of both the response

and predictor vector. The influence function for T evaluated at F in the

direction w0 is then defined as

IF(T ,F ;w0) = lim
ε↓0

T (Fε)− T (F )

ε
=

∂

∂ε
T (Fε)

∣∣∣∣
ε=0

, (0.1)

and describes the effect of an infinitesimal amount of contamination at w0 on

the functional T . We derive a theoretical expression for IF.
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Empirical Sample Influence Function

I Let F̂ = 1
n

∑n
j=1 ∆wi be the empirical distribution function of random

sample {wi = (yi ,xi ), i = 1, · · · , n} from W = (Y ,X).

I Let T (F̂ ) = arg max R̂α(A∗).

I The Empirical Sample Influence Function (ESIF) for T evaluated at F̂ in

the direction of the i th observation wi is defined as

ESIF(T , F̂ ,wi ) =

{
T
(
F̂
)
− T

(
F̂(i)

)}
1

(n−1)

where F̂(i) = {1 + (n − 1)−1}F̂ − (n − 1)−1∆wi is the empirical

distribution function with the i th observation removed.

I The ESIF quantifies the influence of each observation through the

change in the estimated basis when the observation is removed.
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Sample Influence Function

Prendergast (2006) suggested Sample Influence Function (SIF) defined as

SIF
(
ρBC , F̂ ,wi

)
= (n − 1)

{
ρBC (Â(i),k , Âk)− 1

}
,

where Âk = T (F̂ ) = [â1 â2 · · · âk ] and Â(i),k = T (F̂(i)). The ρBC term is the

Bénasséni Coefficient (BC) defined as

ρBC (Â(i),k , Âk) = 1− 1

k

k∑
l=1

∣∣∣∣âl − PS(Â(i),k ) âl

∣∣∣∣
2

= 1− 1

k

k∑
l=1

∣∣∣∣{I − PS(Â(i),k )

}
âl

∣∣∣∣
2
≤ 1,

where || · ||2 is the standard matrix 2-norm, and PS(Â(i)) = Â(i),kÂ
>
(i),k is the

unique orthogonal projection matrix onto S(Â(i),k)
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Sample Influence Function . . .

Recall

SIF
(
ρBC , F̂ ,wi

)
= (n − 1)

{
ρBC (Â(i),k , Âk)− 1

}
.

I It is assumed that Âk and Â(i),k are orthonormal bases for S(Âk) and

S(Â(i),k), respectively.

I Note that, if S(Âk) = S(Â(i),k), then {I − PS(Â(i),k )} projects âl onto

S⊥(Â(i),k).

I Consequently, ρBC (Â(i),k , Âk) = 1 since {I − PS(Â(i),k )} âl = 0 for all

l = 1, 2, . . . , k.
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EIF vs SIF for y = x1 + x2 + x3 + x4 + ε; Prendergast ’06
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Figure 1. Comparison of sample influence function (SIF, solid line) and empirical influence function
(EIF, dashed line) for n observations generated from the model in (5) when (a) n = 100, (b) n = 200,

(c) n = 500 and (d) n = 1000. The j th largest |SIF| is indexed by j .

observations since a large |SIF| indicates that ρ1 detects a large change in the estimated e.d.r.
subspace after the removal of the corresponding observation.

In each of the two models below, let x = (x1, . . . , xp) ∼ Np(0, I p), so that the dimension
in the x-space is p, and let ε ∼ N (0, 1). The first model is

y = x1 + x2 + x3 + x4 + ε (5)

where p = 5, so that SIR∗ seeks to estimate the single e.d.r. direction equal in direction to
(1, 1, 1, 1, 0). For the application of SIR∗, H = 5 equally probable slices will be chosen.

The second model is

y = x1

0.5 + (x2 + 1.5)2
+ 0.5ε (6)

where p = 10, and H = 10 equally probable slices are chosen when applying SIR∗. For this
model, SIR∗ seeks to estimate directions that are elements of the span of (1, 0, . . . , 0) and (0,
1, 0, . . . , 0).

In Figure 1 the SIF (solid line) and EIF (dashed line) values for n observations randomly
generated from the model given in (5) are compared. For clarity, the observations are ordered
with respect to the largest absolute sample influence value (|SIF|). In plot (a), the empirical
influence does a reasonable job in approximating the influence for each observation despite
the small sample size (n = 100) and relatively large error term. Influential observations, as
indicated by the sample influence values, are likewise indicated by the empirical influence
values. Increasing n to 200 observations in plot (b) results in a very close approximation
indicating that, for this example, the empirical influence values would be highly useful in
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Figure: This is for SIR method and ε ∼ N(0.1). Comparison of sample influence function (SIF, solid line) and

empirical influence function (EIF, dashed line) for n observations generated from the model in (6) when (a)

n = 400, (b) n = 600, (c) n = 1000 and (d) n = 2000. The j-th largest |SIF | is indexed by j .
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EIF vs SIF for y = x1

[0.5+(x2+1.5)2] + 0.5ε; Prendergast ’06
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Figure 2. Comparison of sample influence function (SIF, solid line) and empirical influence function
(EIF, dashed line) for n observations generated from the model in (6) when (a) n = 400, (b) n = 600,

(c) n = 1000 and (d) n = 2000. The j th largest |SIF| is indexed by j .

detecting influential observations on the SIR∗ e.d.r. space using the ρ1 measure. In plots (c)
and (d), we increase the sample sizes to n = 500 and n = 1000 respectively. These increases
in sample size provide an even closer approximation. Whilst this is seen as an improvement,
we only need to detect influential observations based on the rank of the empirical influence
values. For this example, the use of EIF appears effective for all sample sizes considered.

The more complicated model given in (6) is now studied. As in the analysis of the simple
model, the sample and empirical influence values for n randomly generated observations are
compared in Figure 2. As n increases, the approximation given by the empirical influence
values improves. However, for even a relatively small n = 400, the empirical influence does
a reasonable job in detecting influential observations (as seen in plot (a)). Observations that
do not influence the estimation of the e.d.r. space have a small absolute empirical influence
whilst those that are highly influential return a large absolute empirical influence.

These simulations have highlighted the usefulness of the empirical IF in the detection of
influential observations on the estimation of the e.d.r. space. The simulations here, however,
are well behaved in the sense that they are generated from models that satisfy Condition 1. In
practice, this condition may only approximately hold and, as such, its usefulness should also
be examined via example. In the next section a real data set example is presented.

5.2. Boston housing data

In this section the problem of detecting influential observations in a real data set is
analysed. For example, consider the data set Boston housing data (Harrison & Rubinfeld,
1978) which contains a variety of environmental and economic measures relating to housing
in census tracts in Boston. The data set consists of the median value of owner-occupied homes
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Figure: This is for SIR method and ε ∼ N(0.1). Comparison of sample influence function (SIF, solid line) and

empirical influence function (EIF, dashed line) for n observations generated from the model in (5) when (a)

n = 100, (b) n = 200, (c) n = 500 and (d) n = 1000. The j-th largest |SIF | is indexed by j .
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Accuracy Measures for Performance Assessment of Â

I Two measures between the estimated and true coefficient matrices Â and

A are used to quantify the accuracy of the estimated basis of SY |X .

I The first accuracy measure is an L2 norm defined as

L2(D)

(
Â,A

)
=
∣∣∣∣ÂÂ> −AA>

∣∣∣∣
2

=
∣∣∣∣PS(A) − PS(Â)

∣∣∣∣
2
.

I Note that 0 ≤ L2(D) ≤ 2

I The second measure of accuracy is the correlation between S(A) and

S(Â) using the square root of Hotelling’s squared vector correlation

coefficient,

ρHC

(
Â,A

)
=

√∣∣(A>A)−1AT Â(Â>Â)−1Â>A
∣∣

=

√∣∣A>ÂÂ>A
∣∣ =

( d∏
i=1

λi

) 1
2

.
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Simulation Studies 1 & 2

Study 1:

I Model: Y = a>1 X(a>2 X + 1) + ε

I Here, p = 10 and A = [(1, 0, . . . , 0)>; (0, 1, 0, . . . , 0)>].

I X1 ∼ t(25), X2,X3 ∼ t(5), X4,X5 ∼ N(0, 1), X6 ∼ Γ (4, 1), X7 ∼ N(0, 1),

X8 ∼ χ2
(3), X9 ∼ Γ (3, 2), X10 ∼ N(0, 1)

I ε ∼ π N(0, σ = .3) + (1− π) U(0, 20), π ∈ {.95, .90}.

Study 2:

I Model: Y =
a>

1 X

0.5+
(
a>

2 X+1.5
)2 + ε

I Here, p = 10 and A = [(1, 0, . . . , 0)>; (0, 1, 0, . . . , 0)>].

I X1 ∼ Γ (4, 3), X2 ∼ t(15), X3 ∼ N(0, 1), X4 ∼ χ2
(3), X5 ∼ t(20),

X6 ∼ t(25), X7 ∼ N(0, 1), X8 ∼ Γ (10, 2), X9 ∼ χ2
(6), X10 ∼ N(0, 1)

I ε ∼ π N(0, σ = .3) + (1− π) U(0, 20), π ∈ {.95, .90}.
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Plots of a simulated dataset from Studies 1 & 2

A randomly selected simulated dataset from each of Studies 1 and 2 is plotted

in Figure
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Figure: n = 200, π = .95. Data y versus A>x plots. Left panel: Study 1, y

versus a>1 x(a>2 x + 1). Right panel: Study 2, y versus

a>1 x/{0.5 + (a>2 x + 1.5)2}.
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Results of Simulation Study 1

Study 1

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n = 300

π = .95

ρ
HC

.9712 .9735 .9769 .9784 .9776 .9773 .9779 .9784 .9814

L2(D) .1945 .1870 .1798 .1728 .1733 .1716 .1695 .1677 .1599

π = .90

ρ
HC

.9635 .9653 .9660 .9680 .9680 .9702 .9727 .9708 .9747

L2(D) .2208 .2149 .2115 .2061 .2012 .1973 .1885 .1908 .1819

Table: Mean distance and correlations L2(D) and ρ
HC

.

T. N. Sriram Robust Recovery of the Central Subspace for Regression Using the Influence Function of the Rényi Divergence



Determination of best α
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Figure: n = 300, π = .90, α = 0.8. Left panel: smoothed SIF value plots.

Right panel: AUCα values, α = 0.1, 0.2, . . . , 0.9.
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Determination of Structural Dimension d
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Figure: n = 300, π = .90, α = 0.8. Left panel: boxplots of |SIF| values

|s(i,k)|, k = 1, 2, 3, 4. Right panel: boxplots of bootstrap L2(O)(Â
b
k , Âk) values,

k = 1, 2, 3, 4.
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Results of Simulation Study 3

Study 3

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n = 300

π = .95

ρ
HC

.9779 .9801 .9808 .9803 .9819 .9797 .9799 .9833 .9834

L2(D) .1856 .1791 .1761 .1759 .1704 .1726 .1710 .1630 .1628

π = .90

ρ
HC

.9774 .9781 .9762 .9782 .9789 .9786 .9808 .9794 .9809

L2(D) .1904 .1879 .1893 .1853 .1820 .1800 .1753 .1760 .1726

Table: Mean distance and absolute correlations L2(D) and ρ
HC

.
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Determination of best α
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Figure: n = 300, π = .90, α = 0.4. Left panel: smoothed SIF value plots.

Right panel: AUCα values, α = 0.1, 0.2, . . . , 0.9.
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Determination of Structural Dimension d
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Figure: n = 300, π = .90, α = 0.4. Left panel: boxplots of |SIF| values

|s(i,k)|, k = 1, 2, 3, 4. Right panel: bootstrap boxplots of L2(O)(Âb
k , Âk) values,

k = 1, 2, 3, 4.
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Hitters Salary Data Analysis

I To illustrate the inherent robustness of our method, we analyze a

well-studied dataset that was initially given in a sponsored section on

statistics and graphics of the American Statistical Association in 1988,

with the stated goal of answering the question; “are players paid

according to their performance?”

I Here, the dependent variable Y is the annual salary in 1986 in natural log

scale.The random vector for predicting annual salary,

X = (X1,X2, . . . ,X16)>, consists of the variables: times at bat X1, hits

X2, home runs X3, runs X4, runs batted in X5, walks X6, errors X7,

putouts X8, and assists X9, in the 1986 season. The remaining career

predictor variables are the number of: times at bat X10, hits X11, home

runs X12, runs X13, runs batted in X14, walks X15, and years in the major

leagues X16, for the players career up to the 1986 season.

T. N. Sriram Robust Recovery of the Central Subspace for Regression Using the Influence Function of the Rényi Divergence



Hitters Salary Data Analysis

Xia et al. (2002) analyzed this dataset using their Minimum

Average Variance Estimation (MAVE) method for identifying the

Effective Dimension Reduction (EDR) subspace in a dimension

reduction setting. However, to improve the results they first

identified outliers, and removed the observations that were deemed

influential.
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Hitters Salary Data Analysis

Hitter Data Analysis – R0.1(A)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

â1 .041 .761 .008 .101 .046 .090 -.046 .035 -.006 .958 .032 .064 -.019 .048 .095 .091

â2 -.093 .125 -.010 .154 .046 -.021 -.021 .005 .001 -.013 -.575 -.185 -.424 -.594 .095 .208

Table: Table of estimated coefficient vector loadings (Example Baseball salary).
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Hitters Salary Data Analysis
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Figure: Right panel: â>1 x vs. y , α = 0.1. Middle panel: â>2 x vs. y , α = 0.1.

Right panel: AUCα values, dimension k = 1, α = 0.1, 0.2, . . . , 0.9
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Hitters Salary Data Analysis
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Figure: Boxplots, α = 0.1, dimension k = 1, 2, 3, 4. Left Panel: Bootstrap

1− ρHC

(
Âb

k , Âk

)
values. Right panel: |SIF| values |s(i,k)|.
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Hitters Salary Data Analysis
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Figure: Smoothed SIF value plots. Left panel: dimension k = 1,

α = 0.1, 0.2, 0.3. The step function nature of the SIF plots in Figure for k = 1

indicates that about 50 of the n = 263 observations are the most influential.

Right panel: dimension k = 2, α = 0.1, 0.5, 0.7. (Baseball salary data analysis)
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Hitters Salary Data Analysis

I As in Xia et al.(2002), after determining the two variates, â>1 x and â>2 x,

we fit a linear model using the two variates as predictors with stepwise

linear regression producing the fitted model

ŷ = 0.42672 + 0.96824(â>1 x)− 0.228(â>2 x)− .42835(â>1 x)2.

I Note that, Xia et al. (2002) also reported an r 2 value of 0.714 for their

model fitted using the EDR directions. In comparison, the adjusted r 2 for

our model is 0.767. Therefore, our method is shown to effectively

mitigate the effect of the well established outlying observations present in

this dataset without their identification and removal.
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